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The decay of the pair correlation function in simple fluids: 
long- versus short-ranged potentials 

R J F Leote de Carvalhot, R Evanst, D C Hoylei and J R Henderson$ 
t H H Wills Physics Laboratory, University of Bristol, Bristol BS8 ITL, UK 
$ School of Chemistry, University of Leeds, Leeds LSZ 9TJ, UK 

Received 12 August 1994 

Abstract. This paper is concerned with two aspects of the theory of the decay of g(r) .  the 
radial distribution function of a liquid. For models in which the attractive interatomic potential 
is short ranged asymptotic decay falls generically into two classes: (a) monotonic decay for 
which r(g(r) - 1 )  - exp(-qr) and (b) damped oscillatory decay for which this function - exp(-Zor)cos(a~r -8 ) .  Crossover between the two classes (a0 = 60) defines the Fisher- 
Widom line of the pa.rticuLv model. This line is calculated for a tluncared Lennard-Jones 
fluid using an accurate  SA) integral-equation theory. We find that it intersects the liquid 
branch of the liquid-vapaur wexistence curve at TIT, % 919 and p l f i  w 1.9, where T, and 
pc are the critical temperahlre and density, respectively. The location of the line Rlative to 
coexistence is very similar to that calculated earlier using the random phase approximation 
(WA) for a square-WeU fluid, suggesting that in this region it is not particularly sensitive to 
choice of pmential or of theory. In the sewnd paa of the paper we develop a theory for the 
intermediate-range and asymptotic decay of g(r) for a fluid whose potential indudes power-law 
(dispersion) wntributions. Although power-law decay dominates at longest range, we show 
that intermediate-range oscillatory structure is determined by a single complex pole. Explicit 
calculations, within the RPA, for a model potential with a I/r6 tail show that at high densities 
t h i s  pole is located close to that of a reference model with a short-ranged truncated poteitial 
and the intemdiate- and short-range smcme of the two models is almost identical. However, 
since there is no pure imaginary pole far the long-ranged potential, there is no pure exponential 
decay of correlations and, therefore, no sharply defined Fisher-Widom line. Intermediate-range 
oscillations in g(r)  are eroded at lower densities but tht mechanism is different f” that in the 
short-ranged models. In addition, we find that the pole structure of models with large truncation 
lengths is very different from that of the full potential making asymptotic analysis for such 
models of little practical use. 

1. Introduction 

Medium-range and asymptotic correlations in liquids and their mixtures control important 
aspects of interfacial phase behaviour, relevant to, for example, wetting phenomena, 
capillary condensation and the solvation of colloidal particles [ 1,2,3,4]. This observation 
has inspired the development of a general theoretical framework for describing the decay 
of inhomogeneous fluid structure in terms of the pair correlations of a bulk fluid [Z, 3,4,5]. 
In order to understand interfacial behaviour one needs to understand the nature of the 
decay of go), the radial distribution function of the appropriate bulk fluid. The latter is 
most readly described via the behaviour of the complex Fourier transform of the bulk direct 
correlation function, i(q). For model fluids with short-ranged potentials the functional form 
of intermediate-range correlations and the asymptotic decay of g ( r )  is determined by the 
pole structure of the liquid structure factor S(q), i.e., by solutions q of 1 -p5(q) = 0. where 
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p denotes density, with the smallest imaginary part (reviewed in subsection 2.1 below). If 
the leading-order solution is purely imaginary then the asymptotic decay of r ( g ( r )  - 1) is 
exponential; otherwise one obtains the familiar exponentially damped oscillatory form. The 
line in @, T )  space (T denotes temperature) where the decay changes from one form to the 
other is known as the Fisher-Widom (FW) line [a, 3,2]. In subsection 3.1 below we present 
what we believe is the first calculation of the position of the FW line based on a highly 
accurate integral-equation theory of simple liquids. The results, for a truncated Lennard- 
Jones fluid, confirm earlier predictions based on the RPA for the square-well fluid [31, that 
the FW line crosses the liquid branch of the liquid-vapour coexistence curve at T / T ,  F ~ N  0.9. 
Furthermore they confirm that asymptotic forms provide a remarkably accurate description 
of intermediate-range correlations, i.e., of g(r)  for r 2 Zu. 

While computer simulators are usually forced to employ truncated potentials, nature 
insists that dispemion forces are truly long ranged. The consequences of such forces for 
interfacial properties was recognized by Derjaguin and his school in the 1930s. Their 
implications for the asymptotic behaviour of g(r )  were first recognized by Widom [7] and 
Enderby et al [SI. The latter authors showed that if the pairwise potential $(r) has power- 
law decay then g ( r )  - 1 + -S2(0)@(r) /k~T as r + CO, with S(0) = pkBTx7, where xT 
is the isothermal compressibility. At intehediate range, where one still expects to observe 
damped oscillations in g(r) ,  the role of dispersion (power-law) forces is less clear. Verlet [9] 
appears to have been the first to note the difficulty in separating intermediate-range structure 
from long-range power-law decay. Power-law asymptotics are determined not by solutions 
of 1 - pE(q) = 0 but rather by terms in the small-q expansion of i (q)  that are non-analytic 
in q2 [SI. However, recent work [2] has speculated that the former continues to control 
the nature of intermediate-range oscillatory correlations. Subsection 2.2 below presents a 
formal approach to obtaining both the intermediate-range and asymptotic decay of the radial 
distribution functions of models that incorporate power-law interactions. In particular, we 
obtain a separation between power-law r-6 decay of &)-I controlled (at leading-order) by 
a q3 term in P(q) and oscillatory structure arising from solutions of I-&) = 0 at complex 
q. This leads to a formula (23) for the intermediate and asymptotic behaviour of g(r) for 
a pairwise potential decaying as -a6/r6. In subsection 3.2 we examine the usefulness of 
this formula for a simple model treated in the RPA. For high densities, we find that retaining 
the leading-order (oscillatory) pole contribution plus the slowest-decaying power law (see 
(38)) provides a very accurate description of both the intermediate-range and asymptotic 
behaviour of the ‘exact’ g(r)  obtained from the full solution of the RpA. Thus, we believe 
that (23) (or its simplified version (38)) constitutes the description of intermediaterange 
oscillatory correlations competing with power-law tails that Verlet [9] was seeking. In 
addition, we consider the pole structure and, hence, the asymptotic correlations of truncated 
(finite-ranged) versions of the same model with increasing truncation lengths. Our results 
enable us to ascertain what remains of the FW l i e  mechanism, controlling the onset of 
oscillatory decay in short-ranged models, when power-law interactions are included. Other 
aspects of our results are discussed in section 4. 

R J F Leote de Carvalho et a1 

2. Theory 

The Omstein-Zernike (oz) integral equation defines the functional inversion between the 
total pair correlation function h(r) g(r) - 1 and the direct correlation function c(r). For 
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pure fluids it is written in real space as 

h(r) = c(r) + p dr'h(r')c([r - T ' I )  s 
and in Fourier space as 

with p the bulk density, where the Fourier transform of a function f(r)  is 

The inverse Fourier transform is then 

In analysing the asymptotics of h(r) we must distinguish between fluids for which c ( r )  is 
short ranged (finite ranged or expanentially decaying) and those for which c(r) decays as a 
power law. 

2.1. Asymptotics of h(r):  short-ranged case 

The asymptotic decay of correlations for short-ranged interatomic potentials was considered 
elsewhere [2,3] and here we merely summarize the relevant results. 

If the system is characterized by an interatomic pair potential @(r)  that is finite ranged 
or exponentially decaying, i.e., c(r) decays faster than a power lawt, then t (q)  possesses a 
small-q Taylor expansion about q = 0 

i ( q )  = c(0) + c(Z)q* + c("q4 + c(6)q6 + . . . . (5) 

Since ?(q) is even all odd derivatives must vanish for q = 0 and the moments in the Taylor 
expansion (S), defined in terms of the even derivatives, are all finite and are given by 

Although c(r), h(r) and their Fourier transforms i (q )  and &q) have physical meaning for 
real r 2 0 and q 2 0 only, it is convenient to consider i (q)  and &q) for q in the complex 
plane. Since h(q) is an even function of q 

t We exclude the region of the bulk critical point. 
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and we expect $(q)  to exhibit poles at complex q = a 

R J F Leote de Camalho et a1 

a1 + iuo satisfying 

There can be no poles lying on the real axis apart from the liquid-vapour spinodals (a = 0) 
and an infinite-ranged oscillatory solution often found at very high density (a0 = 0, a1 # 0) 
1.51. A pole can lie on the imaginary axis where it gives rise to pure exponential decay 
of rh(r) 121. Other poles lie off the imaginary and real axes where they give rise to 
exponentially damped oscillatory decay [2,3]. In the latter case poles must occur in 
conjugate pairs a = fa1 + iao. Equating real and imaginary parts in (8) we have 

m sinh(aor) 
1 = 4np dr r2c(r )  cos(ci1r) 

sin(a1r) 
dr rZc(r)cosh(aor)-. 

w 

When c(r)  is of finite range this pair of equations can always be used to solve for 010 and 011. 

Caution must be exercised when c(r) decays exponentially because, depending on its decay 
length, the integrals may or may not exist. A pure imaginary pole q = iao is obtained from 
(9) alone with 011 = 0. The right-hand side of (7) can be evaluated by contour integration. 
Choosing an infiniteradius semicircle in the upper half-plane we obtain 

where qn is the nth pole, R. is the residue of q E(q)/ (1 - pE(q)) at q = qn and A. = RJ2n 
is a (complex) amplitude. For the model potentials and closures that have been studied there 
is an infinite number of poles. It is assumed that the integrand always vanishes on the outer 
arc of the contour. For large r ,  h(r) is determined by the pole or poles with the smallest 
inverse decay length ao. W O scenarios arise: (a) a pole lying on the imaginary axis has 
the lowest value and the ultimate decay is purely exponential; and (b) a conjugate pair of 
poles has a smaller than that of the pole on the imaginary axis and the ultimate decay is 
exponentially damped oscillatory. The FW line in the ( p ,  T) plane is where the conjugate 
pair of poles closest to the real axis has the same CYO as the pole on the imaginary axis 12.31. 

If we assume that all poles are simple then the residues are given by 

where prime denotes derivative WRT q. A pole on the imaginary axis qn = iao makes 
a contribution Ae-Q' to rh(r) where A = -iao/Zrrp2E'(iao) is the amplitude. A pair 
of conjugate poles q,, = for1 + iao makes a contribution 21AI e-uM cos(a1r - 0) where 
\AI eMie = -ct/2np2E'(a) with positive a, and 0 defined by the right-hand pole [Z]. 
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2.2. Asymptotics of h(r): long-ranged case 

In real fluids long-ranged forces are always present and these have a profound effect on the 
ultimate asymptotics of correlation functions. When long-range (van der Waals) interactions 
are taken into account the pairwise potential decays as $(r)  - a./r" with n positive. These 
are usually divided into three classes: electrostatic, dipolar and dispersion (London) forces. 
We consider only the case of dispersion (London) forces. The asymptotics of  correlation 
functions for ionic fluids was analysed very recently by several groups [lo]. 

In an atomic fluid, the leading dispersion term is (-as/r6), with U6 > 0. This describes 
the instantaneous induced-dipole-induced-dipole interaction. Higher-order terms represent 
dipolequadrupole (-as/r*),  quadrupole-quadrupole (-alo/r") interactions, and so on. 
These latter contributions are, in general, small when compared with the term r-6 1111. For 
large separations retardation becomes important and the leading-order rr6-decay crosses 
over to r-' decay. The implications of  such crossover for the behaviour of h(q) at small q 
has been discussed recently by Reatto and Tan [12]. Here we restrict consideration to the 
case of a model fluid where the only power-law contribution to $ 0 )  is the term -a6/r6 
and this term is not modified at larger r. Incorporating extra power-law contributions and 
crossover complicates the analysis. We return to this point later. 

Outside the bulk critical region, it is known from diagrammatic analysis that c(r )  + 
-B$(r) - Bm,/r6 when r 3 00, where p = l / k ~ T .  Thus, all moments of c(r) with 
n 2 2, defined as in (6), diverge at the upper limit and the small-q Taylor expansion (5) is 
no longer valid. 

The presence of an r-6 interaction also invalidates the approach based on equations (9) 
and (10) for finding the poles, since the integrals diverge. This does not mean that poles do 
not exist. Rather alternative procedures must be found for locating the zeros of 1 - pC(q). 
Once the poles are determined there will be an expansion, of the form (11). in terms of 
complex exponentials. In addition we now expect power-law contributions to the decay 
of h(r).  A satisfactory description of the asymptotics of h(r)  must combine both types 
of contribution. What we know from integral equation studies of full Lennard-Jones (U) 
12-6 fluids is that the short- to intermediate-ranged correlations, i.e., the oscillatory parts 
of h(r), appear to be essentially the same as those in fluids with a truncated U potential. 
This suggests that the leading-order complex poles make much the same contribution for 
both types of  fluid. In order to investigate this conjecture and the possible relevance of pole 
structure to intermediate-range correlations in fluids with long-ranged potentials it is natural 
to consider [2] two possible approaches: (a) use of truncated (finite-ranged) potentials of 
increasingly long-range, (b) use of perturbation theory to separate out the effects of a true 
power-law term. As we discuss further in subsection 3.2. approach (a), though interesting in 
its own right, is not particularly convenient or revealing. As we increase the cut-off distance 
poles cluster along a line and move down towards the real axis. The poles are no longer 
well separated and the pole analysis, though formally correct. is not very useful. More and 
more terms are required in (1 1) in order to achieve a reliable description of the asymptotics. 
Approach (b) takes a different standpoint. It argues 121 that by making a suitable choice 
of finiteranged reference potential it should be possible to mimic very accurately short- to 
intermediate-range correlations, i.e., the reference h(r) should be very close to h(r) of the 
full $(r), except at very long range where the known power-law decay takes over. We 
examine this conjecture further in subsection 3.2. 

Our aim in the remainder of the section is to develop an explicit asymptotic expansion 
for h(r). By returning to the basic theory and selecting a convenient contour in the complex 
plane we obtain an expansion in terms of complex exponentials (from poles) plus a series 
expansion in inverse powers of r .  
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The key feature arising from the -a6 / r 6  potential is the presence of a q3 term in the 
Fourier transform of the direct correlation function [8,13]. Asymptotic Fourier analysis 
[8, 141 shows that if c(r) -+ -p@(r) ,  as r -+ co, then the small-q Taylor expansion of 
t (q )  must contain a q3 term. We assume for positive real q that C(q)  can be expressed as 

where 

and e s r ( q )  is the Fourier transform of a short-ranged function possessing an'expansion in 
powers of q2 

(15) 2 "'b) = csNo) f csr(2) q 2 + CS(4)94 + . . . . 

Note that (13) applies to the entire real axis only if the q3 term is multiplied by sgn(q), 
which ensures that ?(q) is an even function of q. It is not immediately apparent that E(q) 
should take the form (13). Withii the random phase approximation (RPA), (13) follows 
explicitly [13]. That is, if we assume that the only inverse power-law contribution to 
c(r) is the term pas / r 6  then the only term in ?(q) which is non-analytic in q2 is the q3 
term [8, 131. Closure approximations which go beyond the RPA could introduce corrections 
O(h2(r)) into the tail of &)-see, e.g., the m c  asymptotic result (30). These correspond 
to terms O(r-12) which would then give rise to a q9 term in P(q). We do not consider these 
in the present analysis. 

It is easy to see that the analysis carried out for the short-ranged case is no longer 
valid when there is a q3 term in e(q). (This term is in fact responsible for the ultimate 
algebraic decay of h(r) [13].) By choosing the contour around the upper right quadrant of 
the complex plane and closing along the imaginary axis q = iao we have 

where qn is the nth pole in the first quadrant and R, the residue of q C(q)/ (1 - pc^(q)) at 
q =~qn. These poles are given by the zeros of the denominator 

o = 1 - p t ( q )  = 1 - p (zsr(q) + aq3). (17) 

As in the shohranged case, all poles must lie off the real axis except for those corresponding 
to infinite range correlations, such as occur at the spinodals and critical point. However, 
now there can be no poles on the imaginary axis. To see this, we assume that q = iao is a 
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pure imaginary solution of (17). then, since F ( 4 )  is even, 2"(iao) is real. Taking real and 
imaginary parts in (17) requires 

0 = 1 - piSr(iao) (18) 3 0 = i p aao 

which can only have the solution a0 0. Thus, all poles must lie off both the real and the 
imaginary axes. 

As before, we assume the poles q = cq + i@ are simple. Then the residues are given 
by (12). A pole makes a contribution 1A.I eQtrcos(or;r - 0,) where the complex amplitude 
is defined as 

A,  = IA,le-''" = RJn. (19) 

It remains to evaluate the integral in (16). This can be re-written as 

1 - pc^(iao) 

W 

I = -z;;iIm[l 1 daoaoe-aor (-f) (1 - 

where we have dropped a real inkgal. The remaining integral is dominated by the small-ruo 
region. Expanding T"(ia0) as in (15) we obtain 

Finally, by expanding the second factor and retaining only the imaginary contributions we 
obtain the desired inverse power series 

where S(0) is the smcture factor S(q) = 1 + p&q) = 1/(1 - pe(q)) at q = 0. The first 
term in the inverse power-series expansion for rh(r) is identical to the result in [8 ]  and 
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coefficients of higher-order terms are easily obtained from (21). Note that I would vanish 
if E(q) contained only even powers of q which is, of course, the case for a short-ranged 
potential. 

Combining the power series with pole contributions yields the final asymptotic form 

R J F b o t e  de Curvalho et a1 

rh(r) = 1A.I e-'o"r cos(+ - 0.) + S2(0)j?s + HO (23) 

where the bound of the higher order terms can only be proved to be O(l / r7) .  One can show 
that there cannot be any exponential terms in the omitted higher order terms. Equation (23) 
is a key result of the paper. The most significant difference between short- and long-ranged 
cases is the replacement of monotonic exponentially decaying terms due to pure imaginary 
poles by the series expansion in inverse powers of r .  As a consequence no sharp NI line can 
be defined in the long-ranged case, since there, can be no crossover from pure exponential 
to damped oscillatory decay at any range. The ultimate decay of h(r)  is j?a&O)/r6 for 
all fluid states away kom the critical point and the spinodals. However, this does not mean 
that intermediate-range structure will not reflect the thermodynamic state. In particular, 
as the density is decreased at k e d  T ,  S(0) (c( X T )  typically increases rapidly and we 
expect power-law decay to set in at smaller separations thereby eroding the oscillatory 
(pole) conhibutions to h(r) .  This is illustrated in subsection 3.2 where we examine the 
usefulness of (23) in accounting for correlations at intermediate range. 

n r5 

3. Results of calculations 

3.1. Short-ranged case 

Here we present results for the asymptotics of h(r) for a soft-core finite-ranged potential 
treated within an accurate theory. We have chosen to work with the Lennard-Jones 6-12 
potential truncated and shifted at 2.50 

where R = 2.50 and h ( r )  = 4c((u/r)" - ( u / + ) ~ ) .  The liquid-vapour coexistence curve 
for this potential was determined using the Gibbs-ensemble simulation method by Sni t  [15] 
and the estimates of reduced critical temperature and density are respectively T,* = 1.085 
and p," = 0.32. The minimum of the potential occurs at r = 2'/'0 and so its WCA [I61 
division is 

for the repulsive part and 
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for the remaining part. 

oz integral equation (1) 
In our calculations we have employed the 72th and Hansen [17] HMSA closure to the 

The switching function ~ ( r )  
between the soft-mean-spherical approximation (SMSA) closure when Zr --f 0 ( r ( r )  + 0) 

1 - e-? depends on a single parameter Z and interpolates 

and the hypemetted-chain (mc) closure when Zr + 00 (r(r)  + 1 )  

The mixing parameter E is a function of density and temperature and is chosen so as to 
impose self-consistency between the virial and compressibility mutes to the equation of 
state 1171. We have used a standard Picard iterative method with under-relaxation and fast 
Fourier transforms to solve the HMSA. At each thermodynamic state E is determined by 
requiring the isothermal compressibility X T  calculated by numerical differentiation of the 
virial pressure WKT the density to agree with that calculated from the fluctuation theorem: 

The HMSA was used recently by Caccamo et al [18]  in the study of phasestability 
of the LJ fluidt. They assessed the residual inconsistency between the virial and energy 
routes for several representative states in the phase diagram and concluded that imposing 
self-consistency between the virial and compressibility routes is sufficient to ensure a good 
degree of consistency among all three routes to the thermodynamics. Moreover, they found 
remarkable agreement between simulation data and HMSA calculations for the liquid-vapour 
coexistence curve. The HMSA was also used by Abramo and Caccamo [ 191 and by Cheng 
er a1 [20] to predict the phase diagram of a two-component LI fluid and the rigid Cm fluid, 
respectively. A growing body of evidence suggests that the HMSA is one of the most reliable 
and accurate integral-equation theories of liquids. 

Expanding In(h(r) + 1) - h(r)  - +hz(r) + . . . in (29) it follows that the asymptotic 
decay of c(r), in the BNC theory, is 

P X T  = pS(0). 

i.e., c(r)  # 0 for r > I?. By contrast, within the SMSA (28) c (r )  = -p@l(r) for r beyond 
the range of &(r) so that c(r)  = 0 for r > R. "he HMSA (27). with 0 < r ( r )  < 1, yields 

c(r)  - -p@l(r)  + r(r):h*(r) + . . . . (31) 

t A large cut-off R = 14a was employed in [18], 
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Figure 1. The poles of L(q) for the truncated and shifted U fluid at T* = 1.2 for two densities 
(a) pa = 0.445 and @) p* = 0.715. The crosses refer to HMSA results and the circles to HNC 
results. Poles off the imaginq axis occur in conjugate pairs a = fug + iao. Only those with 
a, > 0 are shown here and there is an inlinite number lying at higher values of a1 than those 
plotted. a0 and (11 are in units of U-'. 

Thus, the slowest asymptotic decay (r(r) = 1) that can occur is c(r) - i h 2 ( r )  - 
0 (e-%or). This implies that the integrals in equations (9) and (IO) are not divergent 
and therefore these can be used for determining the poles. We have determined the poles 
cu = f o r l  + icro of i ( q )  from these equations for both the HNC and the HMSA theories. In 
figure 1 we plot the real and imaginary parts of the poles for the supercritical temperature 
T* = 1.2. In figure l(a) the density is p* = 0.445 and in figure l(b) it is p* = 0.715. The 
mixing parameter ti for self-consistency of the HMSA theory is 6 = 0.795 and 6 = 0.220, 
respectively. These plots should be compared with those in figure 2 in [2] where the poles 
for the squarewell fluid treated in the RPA are shown. Although the results for the hard-core 
fluid in the crude RPA differ in detail from those given here for the soft-core fluid in the 
more sophisticated HNC and HMSA theories, there are important similarities. In particular, 
in all three cases the poles closest to the real axis are a single pole on the imaginary 
axis and a conjugate pair of complex poles with LYI k / u .  These are the poles which 
give the dominant asymptotic contributions. The difference between the present results 
and those for the square-well fluid in the RPA lies in the presence of many more poles at 
higher values of WO, reflecting a different class of short-range structure. The two plots in 
figure 1 were chosen to lie on opposite sides of the FW line in the ( p , T )  plane. At the 
lower density, figure l(a), the pure imaginary pole has the lower value of cuo, whereas at the 
higher density, figure I@), the complex pole has the lower value. While the value of cuo for 
the pure imaginary pole does depend considerably on the choice of closure approximation 
the location of the leading complex pole appears insensitive 

It is tedious but straightforward to map out the FW line in the (p,T) plane. The HMSA 
results, for R = 2.5u, are shown in figure 2, along with the liquid-vapour coexistence 
curve obtained from simulation [15]. We did not attempt to calculate the coexistence curve 
using the HMSA, as the implementation of the self-consistency criteria of the HMSA makes 
this a very time-consuming process. However, from the results reported in [18] we would 
expect the HMSA results for the present potential to be close to those of simulation since 
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I 
0 

0.6 P' 0 1 8  
0.1 0 . 9  

Figure 2. The mv tine (crosses) for the truncated and shifted U fluid calculated from the HMSA. 

On the dashed ponion of this line the p m u r e  is positive, whereas on the dotted portion it is 
negative. The solid line joining circles denotes lhe simulation resolts [E] for the liquid-vapour 
coexistence a w e .  The solid circle is the simulation estimate of the critical point 

only the value of R has changed. Support for this assertion comes from the fact that the 
pressure obtained from the HMSA is positive on the dashed branch of the FW line plotted 
in figure 2, appropriate to the single-phase region, but is negative on the dotted branch, 
which lies inside the simulation coexistence curve. On the left-hand side of the FW line 
in figure 2 the imaginary pole iao dominates at longest range and the decay of rh(r) is 
monotonic exponential. On the right-hand side the conjugate pair of poles &CUI + iao with 
a1 = 2z/u dominates at longest range and the ultimate decay of r&) is exponentially 
damped oscillatory. 

The present results should be compared with those in [3] (see figure 2 in [3]) for 
the square-well fluid treated in the WA. The present FW line has the same location with 
respect to the coexistence curve as that in 131. It intersects the liquid side at T/T, w 0.90 
and p/pc w 1.87. The corresponding results in [3] are T/T, w 0.90 and p/p, = 1.92. 
Moreover, we find that on the FW line the linear relation 

a000 = -alps'+ bl (32) 

where a1 and b~ are positive constants is obeyed reasonably well throughout the range of 
the HMSA calculations, i.e., for 0.7 5 T / T ,  5 1.7. A similar linear relation was found in the 
earlier treatment-see (6) of [3]. However, whereas the value of Q I  appears insensitive, the 
result for bl differs significantly from the square-well RPA result. The FW line deviates from 
that in the Square-well RPA at much higher T, with the latter crossing the critical density at 
a significantly lower temperature (TIT, - 1.8) than what is suggested by extrapolation of 
the present line in figure 2. Of course, as T + w these models should exhibit properties 
characteristic of the hard-sphere fluid, which possesses complex (oscillatory) poles only. 

Returning now to figure 1, we note that the dominant pole or poles are, for both densities, 
well separated from the others. This suggests, following [2], that the contributions from 
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Figure 3. h(r)  for the mncated and shined U fluid at T* 7 1.2 wlculated from the HMSA. 
The solid c w e s  are the ‘exact’ results obtained from solving the HMSA integral equations. The 
dashed curves are asymptotic results retaining the single pole on the imaginary axis plus the 
leading conjugate pair of complex poles-see figure 1. (a) p* = 0.445. The pure imaginary pole 
has a00 = 0.9019 and the conjugate pair has ao = -t6.0685 + i1.6041. (b) p’ = 0.715. Now 
the pure imaginary pole has aoa = 1.9472 and the conjugate pair has ao = zt6.4265+i1.0041. 
The second figure in each set shows the results on an expanded vertical scale while the third is 
a plot of In(rh(r)) versus r (the asymptotic results lie on the top of the ’exact’). Note that in 
(a) the In plot is a shaight tine for large r ,  indicating pure exponential decay at longest range, 
whereas in (b) exponentially damped oscillations persist for all r .  
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these poles should determine the intermediate-range structure as well as the asymptotics 
of h(r) .  In figure 3 we compare our numerical results for h(r) ,  the full solution of the 
HMSA, with those of the pole analysis. Only the conhibutions from the pure imaginary 
and the first conjugate pair of complex poles are retained. Figure 3(a) corresponds to the 
poles in figure l(a), the lower-density state, and figure 3@) to those in figure l(b), the 
higher-density state. F e  values of CY for the poles which are retained are given in the 
captions.) For both densities we show results on three scales. The fit to the ‘exact’ results 
is very good for r > 20 at both densities. For r 2 30 the results of the leading-order pole 
analysis are indistinguishable from the ‘exact’ results at normal magnification. In the final 
plots of figure 3(a) and figure 3(b) we show In(rh(r)) versus r .  At the lower density the 
oscillations have disappeared for r 2 1Ou; i.e., the ultimate decay is purely exponential 
since the pure imaginary pole has the smaller &. By contrast, at the higher density, rh( r )  
remains exponentially damped oscillatory for all r since the conjugate pair of complex poles 
has the smaller WO. 

The quality of the fits from the pole analysis is similar to that found in [2] for the 
squarewell fluid treated in the RPA. This suggests that (a) leading-order asymptotics are just 
as useful for soft-core potentials as they are for hard-core potentials and (b) the quality of the 
fit found in [2] was not an artifact of the use of the RPA. We have not attemped to improve 
the fit to the ‘exact’ result by including further pole contributions. Since the higher-order 
poles are clustered (they have similar values of WO-see figure 1) this is unlikely to provide 
a useful route to short-ranged structure. Note that both the HNC and the HMSA generate 
complex poles with 0 < < 2n/u. This does not occur in the RPA watment of the 
square-well fluid [2], where llyl I 2 2n/u for all complex poles t. Finally we should remark 
that, for all state points we have considered, we find only a single pure imaginary pole in 
both the HNC and HMSA calculations. In [Z] (section III) we gave an.argument as to why 
at most one imaginary pole should be expected for a c ( r )  which is of finite range. That 
argument required~that if d2) > 0 then all the other moments c(%) of c(r) ,  with n > 2, 
should be positive. This requirement should still be met within the HNC or HMSA where 
c(r)  is no longer finite ranged but decays with a positive tail-see (31). 

3.2. Long-ranged case 

In this subsection we present results for the asymptotics of h(r)  for a simple model treated 
in the E A .  We consider a system characterized by the following long-ranged pair potential: 

6 
where &,E > 0 and for continuity at r = $U,  we choose 
fluid is defined by 

= <(;U) . The RPA for this 

= chs(r) - B A d r )  (34) 

t However, it dws occur in the RPA for parentids of the form (33.37) for both small (R = 2%) and large 
cut-off-see figure 4. 
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where Ch&) is the direct correlation function of a hard-sphere fluid of diameter U and 
is the attractive part of the potential 

R J F Leote de Carvalho et a1 

with R, 3u/2. The major defect of the RPA is that g ( r )  as obtained from the 02 
equation (2) does not vanish identically inside the hard-core r c U .  For our present 
purposes, however, it has the merit of yielding an explicit form for E(q) which enables us 
to calculate the poles of $(q) and test the accuracy of the asymptotic formula (23). We 
employ the Percus-Yevick approximation for c&) so Eh&) is known analytically. By 
Fourier transforming (33, we find after some algebra 

Since Eh&) is an analytic function of q2 it follows that P(q) = &$(q)  - p&(q) has the 
desired form (13), with Esr(4) defined as the sum of &(q) and all terms except the q 3  term 
in -p&&). The resulting E'(q) has the required power-series expansion (15). Note that 
the coefficient a of the q3 term in (13) is given by a = pn%R,6/12 in the RPA treatment. As 
expected, this agrees with the exact result (14) for this coefficient (a6 = -ER: for the present 
model potential) since the RPA enforces the condition c(r) -+ -p@(r) ,  as r -+ 00. The 
critical temperature and density, obtained from the compressibility route, i.e., from E(O), 
are ksTc/-E = 2.533 and pcu3 = 0.246, respectively. 

In addition to the long-ranged potential we consider a set of truncated and shifted 
potentials constructed from (33) 

R is the cut-off distance and ET is adimensionless constant chosen so that the compressibility 
and related thermodynamic properties are the same as those for the long-ranged potential 
(i.e., ET(0) = E(0)). The truncated systems are also treated in the RPA and hence all the 
models possess the same mean-field liquid-vapour coexistence curve. Since c(r)  is finite 
ranged the poles can be calculated using (9) and (IO). We concentrate first on results for 
truncated potentials with increasing values of R. 

In figure 4 we plot the poles for truncated potentials, at density p* = pu3 = 0.8 and 
temperature TIT, = 1.18 where T, is the critical temperature of the full model (33). The 
circles correspond to the poles at R = 2.50. These poles are all well separated and the 
sequence is somewhat similar to that found for the square-well fluid treated in the RPA 
(see figure 2 in [2]). At this state point the medium-range and asymptotic correlations are 
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Figure 4. The poles of &q) calculated from the RPA for various reference fluids, all at 
TIT, = 1.18 and p* = 0.8 (see tat), ?be circles refer to a cut-off R = 2.5 (r and the 
boltom dotted l i e  to R = 800. The solid tines show the mjectories of six poles plotted for 
values of R in the range 2.5 (r < R < 800. As R increases the poles cluster at a small value of 
uo-see the inses which plots the trajectories and displays the poles for R = 8Qa (dots) on an 
expanded scale. Poles off the imaginary axis occur in canjugate pairs (see caption to figwe 1). 

determined by a conjugate pair of complex poles lying at q x 12x/u. For this fluid there 
is a well defined FW line; i.e., at some lower density the pure imaginary pole has the same 
cy0 as the conjugate pair. We calculated the trajectories of poles as the cut-off distance was 
increased from 2.5a to SOU. For clarity, in figure 4, these are shown for six poles only. 
As R is increased the trajectories of certain poles spiral at first before clustering along the 
dotted line which denotes the results for R = SOU. The pole on the imaginary axis is 
now associated with the ultimate exponential decay beyond the range of the potential (SOU) 
and the amplitude of its contribution to rh(r) is markedly reduced at this large value of 
R. A reasonable description of intermediate-range correlations requires a rapidly increasing 
number of poles as the cut-off distance R is increased. For large R the poles are no 
longer well separated and a pole analysis is not of practical use. At first sight the contrast 
between the distribution of poles for R = 2 . 5 ~  and SOU seems quite dramatic when one 
considers that the potentials for these two cases are not substantially different-the extra 
tail contribution is very small. For example, there is no pronounced signature of a dominant 
conjugate pair of complex poles near a, = &&/U when R is very large. Moreover, as R 
is increased the FW crossover, at fixed T, shifts towards higher densities and soon loses the 
physical significance it has for short cut-off potentials. However, on further consideration 
one realizes that for large R the pole analysis, which expands rh( r )  as a set of (complex) 
exponentials, is attempting to describe the inverse power-law decay which characterizes the 
correlation functions inside much of the range of the truncated potential. This is the basic 
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reason why one requires an impracticable number of terms in the pole expansion. 
We return then to the full, long-ranged potential (33). In this case the leading pole was 

determined numerically by calculating the imaginary and real parts of the complex function 
of complex variable q,  f ( q )  = 1 -p?(q), with ?(q) given by the RPA, (34)-(36). For each 
state point we took the leading complex pole of the system (37) truncated at R = 2.56 as 
an initial guess. By varying 010 and 011 we could, by trial and error, find the pole of the 
full system, that is, determine the intersection of Re [ f ( q ) ]  = 0 with Im [ f ( q ) ]  = 0. In 
the calculations, the series expansion in (36) was truncated at n = 15. Results for h(r) are 
presented in figure 5 for two densities at temperature T / T ,  = 1.18. For p* = 0.8 there is 
a pole at 011 f io0 = 6.489 60 + io1858 05. The corresponding conjugate pair of poles for 
the reference system, truncated and shifted at R = 2.56, are &6.48000 + i0.851 80. For 
p* = 0.45 the leading-order pole is at 011 + io0 = 5.594 28 + i1.586 15 for the full potential 
and at 15.55477 + i1.60227 for the reference potential. We checked numerically that for 
the full long-ranged potential (33) there are no poles on the imaginary axis. Figures 5(a) 
and 5(b) compare the ‘exact’ h(r)  with the asymptotic form 

rh(r) - IAl e-uor cos(01,r - e) + S 2 ( 0 ) B 9  

obtained by retaining only the leading-order-pole contribution and the slowest power- 
law decay in (23). The ‘exact’ result was calculated by numerical Fourier inversion of 
&q) = ?(q ) / ( l  - p?(q)) with ?(q) obtained by numerical Fourier transform of the RPA 
c(r), truncated at r = 80ot. We checked that such a procedure provides a very accurate 
h(r)  for r up to about 506, before the cut-off effect becomes noticeable, which is ample 
for the present purpose. For p’ = 0.8 (figure 5(a)) the agreement is excellent for distances 
larger than r % 2.26. The second plot in figure 5(a) shows clearly that intermediate- 
range structure is described almost perfectIy by the leading pole. At r = 2% the leading 
power-law tail becomes comparable to the pole contribution and dominates completely for 
r 2 35u. At this density it is clear that the poles are well separated and that the higher-order 
power-law contributions are small compared to the leading r-6 term. At p’ = 0.45 the 
poles remain well separated and figure 5(b) shows that (38) provides an excellent fit to h(r )  
for 20 5 r 5 60. However, the high-order power-law contributions are non-negligible for 
r 2 6s and the ultimate r-6 term does not dominate fully until r 2 406. Note that now 010 
is nearly twice as large as for p’ = 0.8 so the oscillations are much more strongly damped. 
Moreover, the power-law contributions have larger amplitudes (S2(0) is much larger at this 
density) so they erode the oscillations at much shorter distances than is observed at the 
higher density. 

The leading-order complex pole of the truncated reference system, with R = 2.56, 
lies very close to that of the full long-ranged potential- see the results quoted above. 
At both densities, 010 and 011 lie within 1% of their values for the full potential. The 
amplitudes IAl and phases 0, calculated from the residues, are also within 1% at p x  = 0.8, 
although the agreement is about ten times poorer at p* = 0.45. These results imply that 
the intermediate-range structure of h(r) should be almost identical for both types of fluid. 
This is confirmed by comparing ‘exact’ results for the truncated reference potential with 
those of figure 5. At the higher density the results for r 5 220- cannot be distinguished 
(at the present magnification) from those in figure 5(a). Only the longer-range behaviour is 
different: In(rh(r)) for the reference fluid continues to exhibit oscillations-see figure 3(b). 

t Whilst t(q) is known analytically, this procedure was less susceptible to round-off error. 
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Figure 5. h(r)  for the full long-ranged potential (33) at T I 4  = 1.18 calculated from the 
RPA. The solid curves are the 'exact' results obtained by numerical Fourier Wosform of the oz 
relation. The dashed c w e s  an the asymptotic result (38) retaining the single complex pole 
plus the leading-order power-law "ibution. (a) p' = 0.8 and (b) p* = 0.45. The second 
figure in each set shows In(rh(r)) versus r and in case (a) the asymptotic results tie on top of 
Lhe 'exact' results. L (a) the decay is exponentially damped oscilLvory until r - 25- when 
power-law decay takes over. In (b) oscillations are emded much earlier but the ultimate r-6 
decay does not fuuy dominate highcradex power-law terms until r 2 400. 

At p* = 0.45 the results for r 5 50 are extremely close to those in figure 5@). As the 
density p* = 0.45 lies on the low-density side of the PW line for the reference fluid (this 
has a pure imaginay pole) the ultimate decay of rh(r) is pure exponential (see figure 3(a)) 
rather than power law. Although the system with the full potential does not possess a sharp 
FW l i e ,  it is clear from figure 5 that the intermediate-range structure of h(r) does exhibit 
a pronounced change of character as the density is reduced. The crossover from oscillatory 
to monotonic behaviour in the range 5u 5 r 5 200 is much the same as that found for the 
short-ranged reference fluid, which does possess a sharp FW line, cf figure 3(a) and 3@). 
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4. Discussion 

Our HMSA calculation of the Fw line for the truncated and shifted LJ fluid was performed for 
comparison with that of 131, obtained for the square-well fluid in the crude RPA. Of particular 
note is the fact that both sets of results show the FW line intersecting the liquid branch of 
the liquid-vapour coexistence curve at the same (scaled) temperature: TIT, m 0.9, and at a 
similar (scaled) density: p/pc zz 1.9. Thus, in the absence of some unlikely cancellation of 
effects, we might conclude that neither the choice of shoa-ranged potential nor the accuracy 
of the liquid-state integral-equation theory severely affects the intersection. This means that 
the conclusions drawn in [3] for the square-well fluid, namely that damped oscillations 
should occur in the density profiles of the liquid-vapour interface for T/Tc < 0.9, should 
remain valid in an accurate theory of correlations for fluids with shorr-ranged potentials. The 
existence of oscillatory profiles on the liquid side of the interface has important repercussions 
for wetting phenomena: at mean-field level complete wetting of a substrate-vapour interface 
by an infinitely thick film of liquid can only occur on the monotonic side of the FW h e  
[4]. The differences between the results for the present model and those for the square-well 
fluid [3] affect the location of the FW line only at very high temperatures, well above I",. 

Our study of the consequences arising from the inclusion of power-law interactions 
raises a variety of issues. Firstly, there is no sharp FW line belonging to the full model that 
will describe crossover of correlation-function decay either asymptotically or at intermediate 
range. This conclusion follows from the fact that in the presence of power-law interactions 
there can be no pole lying on the imaginary axis. That is, there is no longer a pure 
exponential connibution to rh(r).  However, there remains a damped OsciIlatory pole 
structure of the same type as found in typical short-ranged models. In fact, in the RPA 
at least, we were able to give a prescription for generating an associated truncated model 
whose leading-order oscillatory pole lay within 1% of the pole belonging to the full model. 
The associated amplitudes and phases are similarly close. In principle, these criteria could be 
used to define an optimum truncation length and for the state points we consider, this would 
be about 2.750. Accordingly, on the damped oscillatory side of the PW line of the truncated 
model, the asymptotic structure of the truncated system, given by the leading-order pole, 
provides a highly accurate description of the intermediate-range oscillatory structure of the 
full system. At lower densities the erosion of intermediawrange oscillatory structure occurs 
by a different mechanism in the presence of power-law interactions, namely, the power-law 
tail grows (with an amplitude controlled by the compressibility) as the damped oscillatory 
tail shrinks. Such a scenario, which was proposed in our earlier paper [2], is confirmed 
by the present analysis. Note that results for h(r) extracted from neutron-diffraction data 
along the saturated liquid curves of Ne and Xe show intermediate-range damped oscillatory 
decay does persist up to high temperatures [21]. Only for T/Tc > 0.95 does the oscillatory 
decay seem to disappear. 

From DUI analysis of the pole structure obtained with finite-ranged models using very 
long truncation lengths (possible candidates for modelling long-range potentials) we were 
able to identify the physical significance of the pure imaginary pole. This can only describe 
the ultimate exponential decay beyond the truncation range. It follows that a pole analysis 
of models truncated at very long range is of little practical value because the physically 
relevant correlations are then forced to be described entirely in terms of complex poles. As 
a result one finds a dense line of complex poles bearing little relation to the pole structure 
of the true system, in marked contrast to that of the more appropriate short-ranged reference 
systems described above. 

It is straightforward to extend the analysis of subsection 2.2 to potentials which include 
-as/rs, -ulo/rlo etc terms. These give rise to q5 and 4'' terms in t (q) .  One can readily 
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extend the procedure based on (IS) to argue that there should still be no pure imaginary 
solution of 1 - pE(q)  = 0. The higher-order power-law potentials simply make further 
power-law contributions to the tail of h(r).  Their inclusion will shift the location of the 
leading-order complex pole, but only slightly so that intermediate-range oscillatory st-uctnre 
wiil be little affected. Incorporating retardation effects is more complicated since these 
replace the q3 term by one in q41nq [12]. Nevertheless, one would again expect the 
leading-order complex pole to be essentially unaffected. Locating the poles is, of course, a 
non-trivial business. We were able to find these because we had an explicit form for ?(4), 
obtained from the WA. In a more sophisticated theory, where no such form is available, 
it is not clear how one could locate the poles. (Recall that (9) and (10) do not exist for 
power-law potentialst). This problem warrants further study. 

As a final remark we mention a consequence of our results for the decay of pairwise 
correlations h!j(r) in real fluid mixfiurs where dispersion foices are present. The ultimate 
(power-law).decay of the hij(r) will depend on the precise form of the coefficients a&) 
describing the strength of  the - l / r b  potential between an atom of species i and one of 
species j ,  i.e., on the choice of mixing rule. However, as first pointed out by Martynov 
I221 and explained in [2], since the poles of all the &j(q) are determined by zeros of a 
common denominator the damped oscillatory contributions to hjj(r) will have the same 
exponential decay length a;' and wavelength k/cq for all ij combinations. Moreover, for 
a binary mixture, simple amplitude and phase relations, which do not depend on the choice 
of mixing rules, relate the leading oscillatory decay of  ha&) to that of haa(r) and hbb(r) 
121. Our present work shows that for a power-law potential the leading-order complex pole 
is well separated from the others so its contribution dominates the intermediate-range decay 
of h(r),  providing, at high densities, an excellent fit for the range 20 < r < 250. If 
there are well separated pole strnctures for binary mixtures (which we expect) it follows 
that the remarkable relations for the decay of hij(r)  mentioned above should hold over a 
similar, intermediate, range. This leads to considerable simplification in the interpretation 
of structural data. 
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